October 11[°]– 14, 2022 Vodice, Croatia

010 Internation the Medi 39 erraneai 0 odu **6**

BOOK OF ABSTRACTS

XI. International Symposium on the Mediterranean Pig October 11-14, 2022, Vodice, Croatia	Pedigree verification and parentage assignment using genomic information in Krškopolje pig	Anita Ule¹, Suzana Krhlanko¹, Andrej Kastelic², Milena Kovač¹, Špela Malovrh¹	¹ Oddelek za zootehniko, Biotehniška fakulteta, Univerza v Ljubljani, Domžale, Sloveniia ²Kmetijsko gozdarski zavod Novo mesto, KGZS Slovenija, Novo mesto,	Slovenia Corresponding author: Anita Ule (anita.ule@bf.uni-lj.si)		The purpose of this paper is to present the procedure for verifying parentage with genomic data in Krškopolje pigs (KP). The genomic data	has facilitated verification of candidate parents, thus enabling more accurate pedigrees for mating plans, genetic evaluation, and a tool for	resolving conflicts in the trading of breeding animals. To design an efficient preservation program for KP breed based on genetic evaluation	for animals, accurate estimates of the population's genetic parameters are required. All pedigree data should be correctly recorded to avoid	biased evaluations. Genotyping was performed with GeneSeekGenomic ProfilerDowine RokChin at Naoren We collected a total of 1977 geno.	types. Pedigree information was available in the PiggyBank database. To	prepare genotyping data for analysis, we used macros within the stati- stical package SAS 9.4. PLINK 1.9 was used for quality control and the	programme AlphaAssign for pedigree verification, which is part of the Alpha Genes Group Software For confirmation results from Alpha-	Assign, we also checked genomic relationship coefficients using identical	by descent function in PLINK 1.9. The pedigree verification and paren- tage assignment are performed in three steps. First, we associated the	parents with all genotyped animals based on pedigree data in the	animals, we do not have information about the parents in breeding	documentation. Animals of unknown origin are animals without an ear tag or animals which do not have bread characteristics. In the second	tag ut allitudes within un fiut trave diccu characteristics. Ill the second
XI. International Symposium on the Mediterranean Pig October 11-14, 2022, Vodice, Croatia	algorithms have been introduced and applied for the optimization process, such as evolutionary and deterministic algorithms or solvers for linear, quadratic, and rational programmes. The preliminary results of OCS implementation on litter data for local Black Slavonian pig showed that it is nossible to balance the generic gain in the number of viciote bound	alive and the loss of genetic diversity, despite challenges derived by the poor quality of pedigree data. To this end, it is important to assign	selection candidate status only to animals with complete phenotype information and sufficient pedigree quality. This results in a smaller number of selection candidates but ensures the reliability of the	genetic gain and the loss of genetic variability.	Keywords: Pigs, genetic diversity, selection, optimal contributions	e en esta anticada elegente de la constance de La constance de la constance de													

XI. International Symposium on the Mediterranean Pig October 11-14, 2022, Vodice, Croatia	imals. The Can we get rid of autozygosity in the crossbred pig? pes of the senotype	imals, the Maria Chiara Fabbri ¹ , Emmanuel Lozada-Soto ² , Francesco Tiezzi ¹ , be partially Alessandro Crovetti ¹ , Silvia Parrini ¹ , Francesco Sirtori ¹ , TREASURE als which Consortium ³ , Riccardo Bozzi ¹	also whose ¹ Dipartimento di Scienze e Tecnologie Agrarie Alimentari Ambientali e parents in Forestali, ned if the Università deali Studi di Firenze, Florence, Italu		cted dams. y, 91 % of c informa- tence and tence and	or animate eserve the The high levels of autozygosity, small population size, and increased a are only rates of inbreeding have raised concerns about the sustainability of conservation efforts in local European pig breeds. These unfavorable conditions raised the possibility of exploiting the use of crossbreeding as a means to contrast the loss of genetic diversity. Indeed, optimizing strategies for crossbreeding can help to expand the conservation mana-		countries (Croatia: Black Slavonian, Iuropolje; France: Basque, Gascon; Germany: Schwabisch-Hällisches Schwein; Italy: Apulo Calabrese, Casertana. Cinta Senese, Mora Romagnola. Nero Siciliano. Sarda:	Lithuania: Bísara; Serl polje pig; ⁽ breeds inclu	genotyped with the GeneSeek Genomic Profiler (GGP) 70 K HD porcine chip containing 68,516 SNPs. Twenty mating pairs drawn from each combination of breeds (in pure-breeding and crossbreeding) were simulated after phasing genotypes with the Beagle software (v.5.4). Runs	
XI. International Symposium on the Mediterranean Pig October 11-14, 2022, Vodice, Croatia	step, we checked if we had parents' genotypes for those animals. The parentage of an animal can only be confirmed if the genotypes of the offspring and both parents match. Currently, we have 485 genotype	triplets (animal, sire, and dam). In addition, for 365 animals, the genotype of one parent is known, so the parentage can only be partially confirmed. We do not have genotyped parents for 427 animals which belong to the older generations, and their parents were already conflect to	the third step, we tried to find potential parents for the animals whose parentage was rejected, or there was no information about the parents in the documentation. A potential parent can only be confirmed if the	animal's birth date matches the mother's reproductive data. We were able to confirm both parents in 358 animals, representing 77.5% of all verified pigs. Parentage for 30 animals was rejected completely (6 %). We	Tound 3b animals with rejected boars and 43 animals with rejected dams. Out of 176 animals with information about sire genotype only, 91 % of sire was confirmed. Furthermore, for 89 animals with genomic informa- tion of dam only, 84.5 % of all dam was confirmed. The existence and	mating to avoid related mating as much as possible and preserve the population's genetic diversity. Mating plans and other tools are only possible with correct parentage information. Therefore, we will continue genotyping and pedigree verification. KP breeders are informed about their results and the importance of pedigree correctness.	Keywords: Krškopolje pig, pedigree verification, genomic data	Acknowledgement	The research was funded by an EIP project: <i>Sledljivost porekla pri pasmi</i> krškopoljski prašič (3011/2018/11)		34

XI. International Symposium on the Mediterranean Pig October 11-14, 2022, Vodice, Croatia	Implementation of traceability in Krškopolje pig Suzana Krhlanko ¹ , Anita Ule ¹ , Andrej Kastelic ² , Milena Kovač ¹ , Špela Malovrh ¹	¹ Univerza v Ljubljani, Biotehniška fakulteta, oddelek za zootehniko, Domžale, Slovenia ²Kmetijsko gozdarski zavod Novo Mesto, oddelek za živinorejo, Slovenia	Corresponding author: Suzana Krhlanko (suzana.krhlanko@bf.uni- lj.si)	This research aims to implement methods of traceability and verification of animals or meat and establish a traceability system to assure the source of meat is Krškopolje pig (KP). To provide the consumer with a meat product with declared characteristics and origin, it is necessary to introduce protocols to ensure and verify the traceability of nice and meat	Therefore, unique identification of animals, meat or products of animal origin has to be maintained through various steps of the whole food chain. At first, we checked the zootechnical documentation required by Breeding Program for the autochthonous Krškopolje pig and legislation.	The information flow was depicted and equipped with possible weak points based on possible recording mistakes. Traceability of pigs is assured by covering pig lifespan from birth to slaughter using routine zootechnical documentation. All pigs are marked with unique identifi- cation numbers (ID) and origin farm numbers. Furthermore, traceability	after slaughter is guaranteed by the documentation required at the slaughterhouse. To verify the source of meat, we used genetic informa- tion from GeneSeekGenomic ProfilerPorcine 80KChip at Neogen. In total, 1346 samples of tissue or meat products that originated from various sources and breeds were genotyped. After quality control perfor- med by program PLINK 1.9, 40 002 markers, and 1277 samples were retained for the analysis, including 19 different samples of meat or meat products that have been branded as KP meat and originated from seven producers. Software AlphaAssign was used to search for potential
XI. International Symposium on the Mediterranean Pig October 11-14, 2022, Vodice, Croatia	activities were 2.59- and 1.98-fold lower, respectively, in the Krškopolje pigs than lean crossbred pigs (P <0.01). However, no significant diffe- rences were found for the citrate cleavage enzyme (P >0.05). Compared to the lean crossbred pigs, the backfat of Krškopolje pigs contained a higher content of monounsaturated (MUFA) and a lower content of polyunsaturated fatty acids (P <0.01) while the content of	acids did not differ (P>0.05). Consistent with the higher MUFA content, overexpression of the stearoyl-CoA desaturase gene was also detected in Krškopolje pigs when compared to the lean crossbred pigs (P<0.01). In addition, higher expression of genes involved in lipogenesis (i.e. <i>ACACA</i> , <i>FASN</i> , <i>PDAD</i> ,), or occurrent because the lean crossbred pigs (i.e. <i>ACACA</i> ,	Krškopolje pigs than in modern crossbred pigs (P<0.05). In conclusion, Krškopolje pigs exhibited higher fat deposition associated with higher MUFA content, and higher expression of genes involved in lipogenesis than in lean crossbred pigs. Controversially, the activity of lipogenic	enzymes was still found lower in Krškopolje pigs. Keywords: local pig breed, lipid deposition, subcutaneous adipose tissue, fatty acid composition. libogenic enzyme activity gene expression	Acknowledgement	The authors acknowledge core financing from the Slovenian Research Agency (grant numbers P4-0133, J4-3094 and PhD scholarship for K.P.).	

XI. International Symposium on the Mediterranean Pig October 11-14, 2022, Vodice, Croatia	Sensory profile of Croatian dry-cured hams: PDO (Istarski Pršut) and PGI (Krčki, Dalmatinski and Drniški Pršut)	Sandra Petričević¹, Irena Listeš¹, Eddy Listeš¹, Damir Lukačević¹, Zdravka Vidić¹, Tomislav Dujić¹, Ines Skoko¹, Anđelo Katić ¹, Ante Madir², Tanja Bogdanović¹	1Hrvatski veterinarski institut, Veterinarski zavod Split, Split, Croatia 2Klaster Hrvatskog pršuta, Split, Croatia	Corresponding author: Tanja Bogdanović (t.bogdanovic.vzs@veinst.hr)	The aim of this study was to characterize dry-cured hams from four different processing methods, with differences in primary leg treatment, salting and smoking phase. Many biochemical changes (lipolysis, proteo-lysis, oxidation reactions, Strecker degradation and Maillard reactions) take place during the manufacturing and ripening of dry-cured ham and contribute to flavour development. The samples used in this study were four types of Croatian dry-cured hams of which three with Protected	Geographical Indications (PGI) (Krčki, Dalmatinski and Drniški pršut) and one with Protected Designation of Origin (PDO) (Istarski pršut). The research was carried out on 24 dry-cured hams, obtained by processing 24 pig legs following the different specifications. Processing of dry-cured hams was performed according to four protocols, which differ in the	stages of smoking (smoked dry-cured ham: Dalmatinski and Drniški pršut) and salting with a mixture of spices (non-smoked dry-cured ham: Istarski and Krčki pršut). Sensory analysis was carried out by a trained panel (8 judges), selected and trained following the procedures of the ISO	each expert assessor were determined by the repeatability index (Ria),	CVR%. The following attributes were evaluated: color intensity of muscle and fat tissue, color uniformity, amount of intramuscular fat (marbling), surface moisture, tyrosine crystal coverage, odor intensity, hardness,	
XI. International Symposium on the Mediterranean Pig October 11-14, 2022, Vodice, Croatia	parents. We expected that potential parents were all breeding animals in the breeding program with at least one known farrowing with mating recorded. Relationship coefficients were computed using the identity by descent function in the PLINK program. The expected relationship coefficient of an individual with a parent is 0.5, and with grandparents.	0.25. Full sibling coefficients are variable, with a high probability between 0.4 and 0.6. For the individuals found to be related to the samples, we checked if the obtained genomic information was consistent with records in herdbook information. Traceability of KP is obtained	and trading. All pigs must be marked on the right ear with the two-letter country code "SI" and the last six digits of the G-MID of the farm of birth.	The automut, all NP pigs must be marked on the farm with a unique identification number on the ear tag before weaning or mixing piglets. Traceability is assured in the slaughterhouse, where each carcass or its part is marked with key information for declaration. Out of all samples,	Seven meat samples were identified as being originated entirely from the KP breed. Mostly, assigned parents had known mating dates and had genomically confirmed pedigrees. Only in one meat sample we could not match a mating of sire and dam, concluding that found sire with the relationship coefficient of 0.489 could be a full sibling to the pig that the meat originates. Three samples had partially confirmed origin with either of the parents written into the breeding book. In 4 meat samples, we suspect that there was a migration of a different breed in a second or	third generation. We can partially confirm the origin of animals and meat with the current methods. However, research has been directed toward genomic breed verification.	Keywords: pigs, indigenous breeds, Krškopolje pig, genomic pedigree, traceability	Acknowledgement	The research was funded by an EIP project <i>Sledljivost porekla pri pasmi</i> krškopoljski prašič (3011/2018/11)	Ro

Traceability regulations for pigs

Aim of the research

• Implement methods for traceability and verification of pigs and meat with the help of genomic information

XI International Symposium on the Mediterranean Pig 11-14 October 2022, Vodice, Croatia

Materials

	\$ 77 €	
Breed	Krškopolje pig	Modern genotypes
Analysing since	2019	2021
Tissue samples	1583	546
Meat samples	43	/
illumina SNPchip	80K	50K
Quality Control	1494 pig samples	530 pig samples
*	27 meat samples 40.002 SNP	/ 40.669 SNP
XI Inter	rnational Symposium on the M 11-14 October 2022, Vodice	

Results

3

Methods

 Parentage assignment out of potential sires and dams with known litter Each mating of sire and dam must be recorded in the database
B Looking for maximum genomic relationship coefficient between meat samples and Krškopolje pig or other modern genotypes Siblings Offspring Parent Grandparent
C Breed assessment (A & B)
XI International Symposium on the Mediterranean Pig 11-14 October 2022, Vodice, Croatia 5

1 Critical point – Mating

Misidentification of boar

Harem breeding Zootechnical documentation

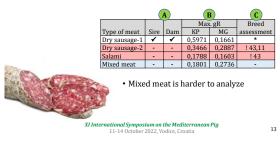
Datum pripusta / osemenitve će je znan	Datum vključitve svinje v haremski pripust*	Ušesna številka svinje	Ušesna št. merjasca	Lastnik merjasc. (priimek lastnika)	Opombe
			_		
			-		
			-		

7

Ear tagging every live Possible mistakes: • Piglets are mixed	e piglet	P. mallion 10 Ballion	veani	ng o	r m	ixin	Dece as	
Late markingLost recordsFalse marking	Energy States and Stat		30,000 20221 80,000 20221 81 		A nate 64 55 55 50 50 60 60 60 60	H. Strand	NAMANA BE 0 E - 10	
		N.R.BUI	Providence in such of				Party a	

Critical points

5 Critical point – Slaughter


10

Breed assessment of meat C В 6 samples are suspected to being crossed with modern genotypes (MG) in previous Neck-1 Max. gR Sire Dan KP MG 0,6780 0,0746 assessme 0,6780 0,0746 0,4809 0,0140 0,4798 0,0295 0,3455 0,0000 0,4624 0,0153 0,0827 0,2049 0,0562 0,1783 0,0555 0,1891 0,2088 0,1043 1 1 Neck-1 Shoulder-2 Shoulder-3 Ham generations ! 44 ! 11 0,2088 0,1043 0,1246 0,1662 ! 54 Neck-1 ! 44 Fresh meat Roasted meat -- 0,1855 0,1235 ! 44 ational Symposium on the Mediterranean Pig 11-14 October 2022, Vodice, Croatia 11

Breed assessment of dry meat

	-0		E	<u> </u>	c	
	4	2				
			Max		Breed	
Type of meat	Sire	Dam	KP	MG	assessment	
Dry bacon-1	1	1	0,5000	0,0000	✓	! No mating !
Dry bacon-2	1	1	0,3044	0,0000	✓	
Dry bacon-3	1	1	0,4701	0,0887	✓	
Dry bacon-4	1	1	0,3572	0,0000	✓	A CONTRACTOR OF THE OWNER
Dry neck-1	1	1	0,5529	0,0000	×	
Dry neck-2	1	1	0,4955	0,0362	✓	PEU
Dry bacon-5	-	1	0,5064	0,0000	✓	A B
Dry ham	-	√	0,5221	0,0000	✓	A series
Prosciutto-1	-	1	0,5079	0,0561	×	
Prosciutto-2	-	-	0,1643	0,0000	*	
Dry neck-3	-	-	0,4453	0,0518	*	an the set
Dry bacon-6	-	-	0,1742	0,1448	! 1244	Contraction of the second
		XI Inter			n the Mediterra Vodice. Croatia	inean Pig

Breed assessment of meat products from more than one carcass

Conclusions

- Identified 6 critical points in supply chain of Krškopolje pig meat
- With parentage assignment and then breed assessment the origin of meat can be confirmed
- The origin (especially fresh meat) was falsified by breeder or producers
- The methods cannot be used for meat from more than one carcass
- Further research on informative SNPs for Krškopolje pig

XI International Symposium on the Mediterranean Pig 11-14 October 2022, Vodice, Croatia 14

Thank you for your attention!

The research was funded by an EIP project:
Traceability of Krškopolje pig breed (3011/2018/11)

 XI International Symposium on the Mediterranear Pig
11-14 October 2022, Volice, Croatia

 15